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1. Introduction .

Plans for using a three dimensional variational algorithm for data assimilation at Fleet
Numerical Meteorology and Oceanography Center (see Daley and Barker, 2000) require
new representations for the prediction error. Because of ever increasing computational
power, it should now be possible to take advantage of larger assimilation regions and
nonisotropic representations of the spatial covariances and cross-covariances between
prediction variables. This document gives a report on an investigation into some aspects
of spatial covariance representation. Two different approaches are reported. Both were
investigated using real data, the pressure height innovations from the FNMOC globalv
weather prediction model, NOGAPS. The data is from a two-month period, September
and October 1999, at time 00 UTC, covering the United States and part of Canada,
including data between latitudes 25° and 65°, and between longitudes 230° and 290°. This
data was subject to the quality control procedures used by NOGAPS. In a further attempt
to eliminate some of the outlying data, all stations that reported fewer than ten days at

any given level were eliminated for that level, and all stations with a standard deviation

. of the innovations greater than eighty at any given level were eliminated for that level.

This resulted in almost no data being eliminated at 700 mb to 50 mb levels. We will
address the question of how much this affected the estimates of prediction and
obsérvation error in Section 3.

The two approaches reported here were taken from somewhat different points of
view. The first method is basically restricted to isotropic approximations using Legendre
polynomials. The point being made here is that since all positive definite isotropic
functions on the sphere have a certain kind of expansion in Legendre polynomials, use of
this approximation guarantees that approximations of positive definite functions will in
turn be positive definite. In addition, certain problems associated with corrrelation
distance interpolation between standard levels simply go away.

The second approach is to investigate the radial nonisotropy of the data. This was
accomplished by establishing bins of radial width 30°, as well as in geodesic distance.
The data in the radial bins was then fit using a special second order autoregressive
function in distance. The variation of correlation distance with direction is detailed and

shown graphically. = While the data shows some variation with direction, the



complications of using such an approximation while maintaining the required positive .

definiteness may be difficult.

2. Legendre Polynomial Approximations
All isotropic positive definite functions on the sphere have a representation in terms
of Legendre polynomials (see Schoenberg, 1942). To be specific, if {F,(x):m=0,1,...}

represents the set of Legendre polynomials, then positive definite functions on the unit

sphere are characterized by having an expansion of the form Za,,f},(cosﬁ), where

n=0
a,20,n=0... and @ is the geodesic distance between the two points (angle between

vectors from the origin to the two points).

Because the vertical correlations between prediction errors are to be computed, it is
necessary to estimate the interlevel covariances. There has been some discussion about
whether the interlevel covariances can be computed directly by forming the interlevel
covariance data, and then fitting it with an appropriate function. Perhaps this is best done

using the Lonnberg and Hollingsworth (1986) scheme wherein the thicknesses are fit and

the interlevel covariances are then deduced by using the appropriate equation. Letting
I(x) = & (x) — &p! (x) represent the pressure level innovation at location x for level i,
then considering the spatial covariance of the thickness from level i to level j we find
cov(Z;(x) - 1;(x),L;(») - 1;(y) =
cov(Z;(x), 1,()) + cov(l;(x), 1;(¥)) — cov(L;(x), 1 ;(¥)) = cov(l ;(x), [;(¥)) -
Assuming homogeneity, isotropy, and identical but independent observation instruments,
the above right side simplifies to

Gi,i,i5|x-y| + C',,(]x -+ Gtz),j,j5|x—y] + Cj,j(lx -yD- 20'3,;,,'5],:-)4 _2Ci,j(|x".V|) s

where C,;(d) represents the spatial covariance of the prediction errors between the i*

and j” levels at distance d =[x—)|, o, ; represents the covariance of the observation .

errors between the i and j“ levels, and &, is the Kronecker delta.

Solving for the interlevel spatial covariance of the prediction errors, we then have




Ci’j(d) = 0.5[0'2 04 +C'i,;(d) +0? o, +Cj,j(d)_20-(21,i,j5d -

0, 0,J,J

cov(Z,(x) - 1,(x), ,(») - L,(»))]
For nonzero distances the Kronecker delta is zero, so assuming the approximation of only

x # y data for the last term, we find that
C,,(d)=05[C,,(d)+C; ,(d) ~cov(L,(x) ~ L,(x), ,(») = L,(»)]

We now approximate the single level data using the Legendre approximation,
N

obtaining C,;(d)~ Y a;'F,(cos#). The upper limit N is some maximum number of
n=0

terms, with @/’ perhaps being zero beyond some value depending on the level. We then

approximate the interlevel thicknesses, obtaining
N

cov(Z,(x) - 1,(x),1,(») - I;(»)) = D_ b’ P,(cos6) , again with the 5’ perhaps being zero
n=0 .

beyond some value depending on the two levels. This then leads to the interlevel

covariance approximation

n=0 n=0

N N N N
G, ()~ a;’P(cos6) = 0.5[2 a,'P,(cosf)+ Y _a)’ B,(cosf) - > bl P,(cos e)} =
n=0 n=0

o.5§N: (@ +a’’ =) P.(cosb),
n=0
or a¥’ =05(a)’ +a)” —b}’). For zero distance, the empirical vertical covariance matrix
N
for the prediction errors is then given by the matrix [Z a’ :}
n=0
Because it is necessary that statistical objective analysis schemes have a
representation of the spatial covariance of the prediction error, an investigation of the
efficacy of using the Legendre representation of the prediction error was undertaken. The
data was as described in the Introduction. While the data set itself had distances as large
as 0.7+ radians, all data for distances greater than 0.6 radians were discarded. It is almost

certainly true that the correlation tends to zero as the distances become large. In addition

this is very desirable from a computational point of view. In an attempt to ensure this,



zero valued data at a spacing of 0.05 was added starting at distance 0.64159 out to
distance 7.

In line with previous studies by the author (Franke, 1999a, 1999b; Franke and Barker,
2000), the binned data was weighted by the number of covariance pairs in the bin. The
artificial data was given the maximum of the weights for the actual data. The fitting
problem then becomes a linear problem, and least squares was used to determine the
coefficients in the Legendre expansion. A maximum of 25 coefficients in the expansion
was permitted; that is, a maximum 24™ degree polynomial was used. However, if any
coefficients were negatfve, the degree was successively decreased until all coefficients in
the resulting fit were nonnegative. An alternative method would be to delete the term
with (say) the largest negative coefficient and recompute the fit, continuing until all
coefficients are nonnegative. No alternate method was explored, however, and in many
instances all 25 coefficients were positive. Most (all but three) of the forty-two
exceptions involved the 1000mb, 925mb, 30mb, 20mb, and 10mb levels. In only one
instance did the same level data lead to fewer than 25 coefficients being positive, this
. occurring at the S0mb level.

Some of the 136 sets of the binned data and the resulting fits are given. Shown in
Figure 1 are four different single level fits. Notice that the curves tend to have small
amplitude variations imposed on the expected decaying form. These appear to be real;
based on the binned data values, but whether they are physically real or not is unknown
to this investigator.

The standard deviations of the prediction errors, observation errors, and innovations
(total error) are shown in Figure 2. These curves are somewhat different for this data
from 1999 than that taken in 1996, for which the corresponding plots are shown in Franke
(1999b, Figures 16 and 17). The error curves shown in Franke (1999b) show a definite
hook to larger values below 850 mb. In Figure 2 no such behavior is noted. Above 300
mb the observation error curve in Figure 2 has a slight decrease before continuing to
increase above that, and then similar behavior as Figure 17 (time 00 UTC, as is the time
for Figure 2) in Franke (1999b). However, the observation error takes on slightly smaller

values in Figure 2, above 300 mb, generally by two to three meters. The prediction error

curve in Figure 2 is also some meters smaller than that in Franke (1999b) Figure 17




above 150 mb. Here the curve decreases up to 50 mb before beginning to increase in
value. At 50 mb the value of prediction error is approximately 5 meters smaller.

Binned thickness data and the Legendre fits for four thicknesses are shown in
Figure 3. These figures exhibit much the same kind of behavior. Finally, the implied
interlevel cross-covariance curves are shown in Figure 4. Also shown are the implied
binned data values. These values were obtained by applying the same transformation to
the binned values (but plotting them at the midpoints of the bins) and will not be exactly
the same points as would be obtained by computing the binned interlevel cross- -
covariances from the raw data. However, differences would probably be minor. Figure 4
shows the same somewhat wiggly behavior, however the 850mb level to the 250mb level
cross-covariance data is more scattered and the curve initially increases in value. Given
the data, the curve looks reasonable.

Some information about the behavior of the sequence of coefficients can be seen from
the bar charts for the sequences for the prediction errors at the various levels, shown in
Figure 5. All levels are plotted with the same vertical scale except the 10mb level. It is
interesting to note that there is a bimodal distribution of coefficients for most levels. The
10mb level distribution looks somewhat anomalous compared to the other fifteen levels.

The coefficients of the interlevel cross-covariance functions almost all include
negative values; to be specific, 90 out of 120 interlevel cross-covariances included
negative coefficients. This indicates that fitting the interlevel cross-covariances with a
pdsitive definite function is probably improper.

The vertical correlation of the pressure level prediction error derived from the above
fitting procedure is shown in Figure 6, indicated by the marked points. Also shown is the
fit obtained by simultaneously finding a transformation of logP and a fit to the data using
a full third order autoregressive function in the transformed coordinates. See Sampson
and Guttorp (1992) and Franke (1999a, 1999b) for details of this procedure. The fitting
values are plotted without symbols using the same type of line. Note that while the
vertical correlation matrix derived from the Legendre fits is not positive definite, the
fitting function for the vertical correlation data is positive definite. The curves were
plotted using piecewise linear interpolation for the transformation curve, hence making

the curve as plotted nondifferentiable. However the fitting curve itself, shown in Figure 7




has a very sharp transition at zero distance, yielding very large second derivatives. The
sharp peaks shown in the correlation curves may not be entirely attributable to the
piecewise linear transformation curve. Figure 7 also shows the transformed data along
with the fitting function, while Figure 8 shows the transformation of the logP coordinate
system for the prediction errors.

Figﬁres 9, 10, and 11 show the corresponding graphs for the observation errors. As
was noted in Franke (1999b), the vertical correlation curves are much broader for the
observation error than for the prediction error.

After the vertical correlation matrix for the height errors has been approximated, a
new interlevel thickness error fit is implied, one having the appropriate intercept as

indicated by the variances of the errors at the two levels and the correlation between the

N
two levels. That is, the empirical covariance matrix is given by [Z a’ }, but we have

n=0

N
approximated this matrix by [z a;;J:I. To be consistent, we must now redefine the

n=0

interlevel fits with the constraint implied by that approximation. Since

N N
Zaﬁ;’ =52 (@) +a)’ —b,’), we now redefine the coefficients in the thickness fits (call

n=0 n=0

N N
the new values ) so that D )’ =5 (a;’ +aj’ ~ B;’). This is achieved by fitting
n=0

n=0
the thickness data subject to the constraint that for each pair of levels,
N s N s ) PR
Z B = Z(a,’;’ +al”’ -2a;’). This, in turn, implies a new interlevel spatial covariance

n=0 n=0

function that satisfies the approximate vertical correlation properties given by Figure 6.
The new curves (and the binned data) are shown in Figure 12 for the same levels as
shown in Figure 4, to which the curves can be compared. For three of the pairs of levels,
the differences are minor. For the 850mb and 250mb levels the curves are quite different
from each other, the intercept shown in Figure 12 being forced to be considerably larger

than that in Figure 4. Beyond a distance of about 0.175 radians the curves take on

essentially similar values.




The advantages and disadvantages of using a Legendre representation for spatial
covariances and cross-covariances are worth noting. First, the evaluation of the Legendre
polynomials is probably somewhat more expensive than other approximation functions
with fewer parameters. . The cosine of the radial distance is needed, but this relieves one
of computing the actual radial distance, saving the computation of the inverse cosine.
Evaluation of the Legendre polynomials can be accomplished using a three term
recurrence relation that involves three multiplications (and a subtraction) for each degree
larger than two. Hence, evaluation of all polynomials up to 24 degree would require
sixty-six multiplications, then followed by the dot product of the coefficient vector with
the polynomial vector, of length twenty-five. This assumes the coefficients in the
recursion relation are precomputed and stored. It would seem to be an advantage that one
could interpolate between levels by interpolating the coefficients between levels. No
experiments were carried out to try to determine whether the overall interpolation matrix

would be positive definite (experiments similar to those carried out in Franke (1999b)).

3. Direction Dependent Covariance Functions

The directional dependence of the spatial covariance function for pressure height
prediction error was investigated. In order to do this the data was collected in bins
dependent on both geodesic distance and direction. Covariance value is the same
independent of whether one takes direction from the first point to the second, or the
second point to the first. Because the direction of shortest distance between two points is
the not the opposite for the two points, it is necessary to do an average of directions
between the two points. For these experiments it was done as follows. Let the direction
from point one to point two be initially on a heading of & degrees from north (positive to

the east) and the direction from point two to point one be initially on a heading of g

degrees (—180 <, <180). Then the angle of direction between the two points was

taken to be %(a + [ +180). The covariance data for each level was accumulated in 80

distance bins of size 0.01 radian and into radial bins of size 30°.

The spatial covariance was modeled using the special second order autoregressive

function, F(d;A4,b) = A(1+bd)e™™ . The value of b was allowed to vary with direction,



while the value of A (the intercept) was constrained to be the same in all directions.
Given that there were six radial bins this resulted in a fit at each level having seven
parameters. Because the available data is now being put into six times as many bins, the
percentage of the amount of data for each of the six fits ranges from about 13% to about
22 % of the total, depending on the direction and the level. At the 1000mb level there
was a definite lack of data indicated by the binned data plots. At the 50mb and above
level the binned data showed considerable scatter, also partly because of a lack of data.
For each of the sixteen standard levels, the radial data was fit as described in the
previous paragraph was computed using least squares, weighted by the number of
covariance pairs in each bin corresponding to a positive distance. The spatial covériance

fits in the six directions are shown for four different pressure levels in Figures 13-16.

The intercept determined the prediction variance, O 2 (for the k™ level), with the
difference between the variance of the innovations and the prediction variance being the
observation variance. The curves in these four figures can be compared qualitatively
with the four Legendre fit curves shown in Figure 1. The curves are similar at lower
levels and vary more at upper levels, although the Legendre fits have more small scale
variability.

The standard deviations of the three quantities, as derived from these approximations,
as shown as the solid piecewise linear curves in Figure 17. These curves can be
compared with those in Figure 2. Doing so, one sees that the prediction error standard
deviation curve is very similar in the two cases. At the lower and upper levels the
prediction standard deviation is somewhat larger in Figure 17, while the prediction error
is somewhat smaller at the intermediate levels. As noted in the introduction, stations
reporting fewer than ten days at any given level were eliminated for that level, as well as
levels for which the standard deviation of the innovations was greater than eighty. Also
shown in Figure 17 as dashed curves are the standard deviations when all valid data is
included. At the intermediate levels there is generally no difference. At the lower levels
there is a no perceptible difference in the prediction error standard deviation, while the
observation error standard deviation varies by up to about 0.9m. At the upper three levels

the prediction error varies up to about 1.1m, while the observation error varies by more




than 5m at 30mb and 20mb. Apparently discarding the high variance innovations
primarily affects the observation error calculation, not a surprising conclusion.

The thicknesses were fit for all pairs of levels. The results show that at thicknesses
involving the 1000mb and 50mb and above levels there is a great deal of scatter, as noted
previously. Fig‘ures 18-21 show the thickness plots for the same thickness data shown in
Figure 3 for the Legendre fits. As for the single level fits, the radially varying data show

the scattering effect of fewer data in each direction. The variance O, of the k to /

level thicknesses tend to be considerably larger using the present scheme compared to
those derived from the Legendre fits. In fact, it appears that the present scheme may
give more reasonable results than the Legendre scheme, although this thought will be
revisited in the next paragraph.

Once the single level approximations and the thickness approximations are computed

the implied interlevel spatial covariance functions can be computed by
Cu(d) =10l A+bd)e™ + O} (1+bd)e™ - O}, (1+b,,d)e ™). The plots for the

six directions for each of the interlevel spatial covariances corresponding to the thickness
plots alluded to before are shown in Figures 22-25. Note that the behavior of the spatial
covariance functions seem to be anomalous near zero distances. This seems to be caused

by the rather large values of b,, (more will be said later) obtained in the thickness fits,

coupled with the small cross-covariance of the interlevel fits (compared with the
Legendre fits shown in Figure 4). This smaller value of the cross-covariance is directly
attributable to the larger value of the thickness variance obtained using the SAR2 fits.
Thus, while the variance of the thickness fits obtained using SAR2 approximations
appear to be more reasonable based on the plots of the approximations and the data, in
fact the smaller cross-covariances of the Legendre fits leads to what seem to be more
reasonable interlevel approximations.

The reciprocal of the parameter b is referred to here as the “correlation distance”,

and is the distance at which the argument of the exponential has value minus one, and

hence the value of the correlation function at that point is 2e¢™ ~.74 . The variation of the
correlation distance with direction is shown in Figure 26. The value in the six directions

computed (and reflected) are shown connected by solid lines. The dashed lines were



q,
(A+b,cos’(6-6)))

obtained by fitting this data with a function of the form D,(8) =

Here the ! subscript denotes the level. The initial inclination was to fit an ellipse to the
data, however, it is important to be able to evaluate the correlation distance easily for a
given angle. Thus the above choice, which looks quite elliptic for moderate values of 5,
was chosen. However, it may not be a good choice if the ratio of correlation distances
vary by more than about a factor of about two (corresponding to a value of 5, =1), since
a slight pinched shaped occurs then (see the 1000mb level curve in Figure 26).

There is a considerable variation in the shape of the correlation distance curves and
the orientation of the major axis. The behavior at the 1000mb level is anomalous. At
levels from 925mb to 100mb the longer axis of the oval curves are generally in a
direction somewhat west of north, although at 250mb the longer axis is almost north.
This implies that for these levels the errors have greater spatial correlation in the north-
south direction than in the east-west direction. It seems reasonable that errors would be
less highly correlated in the direction of air movement since that brings rapid change,
while in the perpendicular direction basically the same kind of conditions propagate in
the direction of the movement. At the 70mb to 20mb levels the correlation distance
curves are close to circular, the fitted curves more so than the derived data. At 10mb the
correlation curve is similar to that at the lower levels. The correlation distance plots for
these levels show a great variation in size and shape that is probably not indicative of the
actual properties of the prediction error.

The correlation distance plots for all 120 interlevel thicknesses are shown in the
thumbnail plots in Figure 27a,b. It is interesting that the correlation distances for many
of the thicknesses are small, especially compared to the correlation distances for the

single level data. This was noted in passing (without showing the data) when discussing

the interlevel cross-covariance curves, but in terms of the coefficients b,, being larger for

the thicknesses. This contributes to the thickness part of the interlevel approximation
decaying away rather rapidly. Since this part enters negatively, the sum of the three
terms yields the kind of initially increasing curve seen in Figures 22-25.

The vertical correlation matrix for préssure height errors implied by the single level

and thickness spatial covariance approximations is illustrated in Figure 28, with the same

10




format as that for Figure 6. The empirical vertical correlation values are indicated by the
marked points. Also shown is the fit obtained by simultaneously finding a transformation
of logP and a fit to the data using a full third order autoregressive function in the
transformed coordinates. As before, the fitting values are plotted without symbols using
the same type of line. Again, the vertical correlation matrix derived from the Legendre
fits is not positive definite, but the fitting function for the vertical correlation data is
positive definite. The curves are similar to, but nof the same, as those of Figure 6. The
fitting curve and the transformed data are shown in Figure 29, with the transformation
shown in Figure 30. The corresponding information for observation errors is given in
Figures 31-33, and these are also seen to be similar to the corresponding Figures for the
Legendre fits, given in Figures 9-11.

As with the Legendre approximations, we now show the implied interlevel cross-
covariance approximations obtained by replacing the thickness variance obtained from
the fitting process with that implied by the vertical correlation function. Unlike with the
Legendre approximations, we have only replaced the variance of the thickness, and have

not then refit the data with the variance fixed. That is, at zero distance we have
Cu= %(O’ ‘+0.-0 fk) In cases where C,, is made larger by the vertical correlation
approximation (for example, for the 850mb and 250mb levels), a smaller approximate
value of O ,2,,‘ is implied, about 84 rather than 100. If a new SAR2 approximation to the

data shown in Figure 19 were computed with the intercept fixed at the smaller value, it is
certain that the correlation distance would be larger. This in turn would alleviate the
problem shown in Figure 35, where the interlevel spatial cross-covariance initially rises
sharply from its value at zero distance. On the other hand, the 850mb to 500mb levels
spatial cross-covariance would still be essentially like that in Figure 34, which is also
essentially like that in Figure 22. This follows since the approximate value of the
correlation shown in Figure 28 is essentially the same as the empirical value computed
from the thickness variances. The 500mb to 250mb spatial cross-covariance and the
500mb tol50mb spatial cross-covariance changes would be similar to the 850mb to

500mb and 850mb to 250mb changes, respectively.  The data and implied

11



approximations after the vertical correlation approximation are shown for the four pairs

of levels in Figures 34-37.

4. Conclusions

The results of this study have given risé to some interesting questions. We will
emphasize the two approaches separately, while comparing them.

The fact that 25 coefficients of the Legendre approximation routinely (but not always)
turn out to be positive indicates that, for the most part, the data is sufficient to yield actual
positive definite spatial approximations. The Legendre approximations also confirm that
the interlevel spatial cross-covariance functions are not necessarily positive definite, and
probably should not be approximated by positive definite functions. The interlevel cross-
covariance functions could certainly be approximated using the Legendre functions,
however the implied thickness covariance functions would not be constrained to be
positive definite. ~The Hollingsworth and Lonnberg scheme of obtaining implied
interlevel approximations via the thickness approximations seems to this investigator to
the best idea. Using the approximate vertical correlation functions to yield the thickness
variances, followed by the recomputation of the thickness approximation subject to the
appropriate variance seems to yield a consistent approximation. ‘However, as noted
above, it is unknown whether the full 3D approximation obtained in this manner is
positive definite, or not.

One drawback of the approximation is that the evaluation of the approximation may
be more time consuming than wusing other approximations, such as the SAR2
approximation. If an overall more consistent approximation is obtained the additional
expense may be worthwhile. The radially varying approximation investigated here using
the SAR2 spatial approximation could be carried out using the Legendre approximation.
The interpolation between coefficients in the radial direction, as well as the vertical is
easily accomplished with the Legendre approximation.

The radially varying spatial covariance aproximations show that there is a
pronounced difference in different directions, at least at certain levels. A possible
problem is that in order to have sufficient data to well-define the data, a time period long

enough that temporal effects are introduced may be necessary. While the two month

12




results we have seem reasonable, a longer time period may yield better results. If fewer
directions were computed, perhaps 4 instead of the 6 used here, the binned data would be

somewhat less scattered in most instances.
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Figure 3: Binned interlevel thickness error data at four pairs of levels and fits by
Legendre polynomials. The total innovation variance is shown by the “o0” symbol on the
axis.
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interlevel thickness error fits using Legendre polynomials. The total innovation cross-
covariance is shown by the “0” symbol on the axis.
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Figure 6: Vertical correlation curves for prediction error obtained from Legendre fits
(with symbols) and the approximation obtained by simultaneously finding a
transformation of logP and fitting with a full third-order autoregressive function (same
type curve, without symbols).
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Figure 9: Vertical correlation curves for observation error obtained from Legendre fits
(with symbols) and the approximation obtained by simultaneously finding a
transformation of logP and fitting with a full third-order autoregressive function (same
type curve, without symbols).
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. Figure 12: Interlevel pressure level error cross-covariance data from binned single level

and binned interlevel thickness error data with implied fit from single level error fits and
interlevel thickness error fits using Legendre polynomials after imposing the implied
thickness variance derived from the vertical correlation approximations shown in
Figure 6. Compare with Figure 4.
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Figure 13: Binned pressure level error covariance data and spatial covariance
approximations using SAR2 approximation, in six directions at 30° intervals, starting at
North and going clockwise. This data is for the 850 mb level.
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North and going clockwise. This data is for the 500 mb level.
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Figure 15: Binned pressure level error covariance data and spatial covariance
approximations using SAR2 approximation, in six directions at 30° intervals, starting at
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Figure 16: Binned pressure level error covariance data and spatial covariance
approximations using SAR2 approximation, in six directions at 30° intervals, starting at

North and going clockwise. This data is for the 150 mb level.
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Figure 17: Standard deviations of prediction (p) and observation (o) errors as derived
using the angle varying fit by SAR2 functions. The dashed line was derived using all
valid covariance data, while the solid line used a data set that eliminated low reporting
stations and large variance stations. The symbol t denotes the total standard deviation.
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Figure 18: Pressure level thickness error covariance data and spatial covariance
approximations fits using SAR2 approximation,starting at North and going clockwise.
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This data is for the 850 to 500 mb thickness.
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Figure 19: Pressure level thickness error covariance data and spatial covariance
approximations fits using SAR2 approximation, in six directions at 30° intervals starting -
at North and going clockwise. This data is for the 850 to 250 mb thickness.
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Figure 20: Pressure level thickness error covariance data and spatial covariance
approximations fits using SAR2 approximation, in six directions at 30° intervals starting
at North and going clockwise. This data is for the 500 to 250 mb thickness.
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Figure 21: Pressure level thickness error covariance data and spatial covariance
approximations using SAR2 function, in six directions at 30° intervals starting at North -
and going clockwise. The total innovation cross-covariance is shown by the “0” symbol
on the axis. This data is for the 500 to 150 mb thickness.
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Figure 22: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and
interlevel thickness error fits using SAR2 approximation. The total innovation cross-
covariance is shown by the “0” symbol on the axis. This data is for the 850 and 500 mb
levels.
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Figure 23: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and -
interlevel thickness error fits using SAR2 approximation. The total innovation cross-
covariance is shown by the “0” symbol on the axis. This data is for the 850 and 250 mb
levels.
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Figure 24: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and
interlevel thickness error fits using SAR2 approximation. The total innovation cross-
covariance is shown by the “0” symbol on the axis. This data is for the 500 and 250 mb
levels.
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Figure 25: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and .
interlevel thickness error fits using SAR2 approximation. The total innovation cross-
covariance is shown by the “0” symbol on the axis. This data is for the 500 and 150 mb
levels.
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Figure 26: The solid lines give the correlation distances as a function of direction for the
sixteen levels. The dashed lines represent the correlation distance as fit by a function of

the form D,(6) = !
(1+b,cos°(6-6,))

for level /.
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Figure 27a: Thumbnail plots of the correlation distance as a function of direction for .
interlevel thicknesses. Some distances are off-scale in order to have a reasonable
common scale for all plots.
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Figure 27b: Continuation of Figure 26a.
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Figure 28: Vertical correlation curves for prediction error obtained from SAR? fits (with
symbols) and the approximation obtained by simultaneously finding a transformation of .
logP and fitting with a full third-order autoregressive (same type curve, without symbols).
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Figure 31: Vertical correlation curves for observation error obtained from SAR2 fits
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Observation error correlation after transformation, radial fit
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Figure 32: Vertical observation error correlations and fitting curve for observation error
in the transformed coordinate system.
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Figure 33: Transformation curve for observation error.
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Figure 34: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and
interlevel thickness error fits using SAR2 polynomials after imposing the implied
thickness variance derived from the vertical correlation approximations shown in
Figure 28 . This data is for the 850 and 500 mb levels. Compare with Figure 22.
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Figure 35: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and
interlevel thickness error fits using SAR2 polynomials after imposing the implied
thickness variance derived from the vertical correlation approximations shown in
Figure 28 . This data is for the 850 and 250 mb levels. Compare with Figure 23.

45



Pressure levels 500mb & 250mhb N Pressure levels 500mb & 250mb NNE

100 100
80t 80¢%
E =
8' ol 8- 60+ )
g 8
g 40 g 40 ’
o 0
2 2 20f
2 2
o < gl
-20

0 0.2 04 06 08 0 0.2 04 06 08
Distance, radians ; Distance, radians
Pressure levels 500mb & 250mk ENE Pressure levels 500mb & 250mb E
100 r r T 100 r r r
+ 80¢ . " 8ot
g g0t 8 B0}
& kS
S 40 g 40
8 3
@ 20t 2
e =4
o gt O
-20 - . 5 -20 . . . .
0 6.2 04 08 08 0 0.2 04 06 0.8
Distance, radians Distance, radians
Pressure levels 500mb & 250mb ESE Pressure levels 500mb & 250mb SSE
100 T T v 100 r . v
80¢ : 8o}
B0} 60}

Cross covariance, me
N By
o

Cross covariance, m?

0 0.2 c4 06 038 o 02 04 06 08
Distance, radians Distance, radians

Figure 36: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and .
interlevel thickness error fits using SAR2 polynomials after imposing the implied
thickness variance derived from the vertical correlation approximations shown in
Figure 28 . This data is for the 500 and 250 mb levels. Compare with Figure 24.
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Figure 37: Interlevel pressure level error cross-covariance data from binned single level
and binned interlevel thickness error data with implied fit from single level error fits and
interlevel thickness error fits using SAR2 polynomials after imposing the implied
thickness variance derived from the vertical correlation approximations shown in
Figure 28 . This data is for the 500 and 150 mb levels. Compare with Figure 25.
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